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Abstract  

In this paper we propose the first effective genetic 

algorithm (GA)-based jigsaw puzzle solver. We introduce a 

novel crossover procedure that merges two ‘‘parent’’ 

solutions to an improved ‘‘child’’ configuration by 

detecting, extracting, and combining correctly assembled 

puzzle segments. The solver proposed exhibits state-of-the-

art performance, as far as handling previously attempted 

puzzles more accurately and efficiently, as well as puzzle 

sizes that have not been attempted before. The extended 

experimental results provided in this paper include, among 

others, a thorough inspection of up to 30,745-piece puzzles 

(compared to previous attempts on 22,755-piece puzzles), 

using a considerably faster concurrent implementation of 

the algorithm. Furthermore, we explore the impact of 

different phases of the novel crossover operator by 

experimenting with several variants of the GA. Finally, we 

compare different fitness functions and their effect on the 

overall results of the GAbased solver.  

1. Introduction 

Introduction The problem domain of jigsaw puzzles is 

widely known to almost every human being from 

childhood. Given n different non-overlapping pieces of an 

image, the player has to reconstruct the original image, 

taking advantage of both the shape and chromatic 

information of each piece. Although this popular game was 

proven to be an NP-complete problem [1, 7], it has been 

played successfully by children worldwide. Solutions to 

this problem might benefit the fields of biology [13], 

chemistry [24], literature [15], speech  

 

 

Descrambling [26], archeology [2, 12], image editing [5] 

and the recovery of shredded documents or photographs [3, 

6, 11, 14]. Besides, as Goldberg et al. [10] have noted, the 

jigsaw puzzle problem may and should be researched for 

the sole reason that it stirs pure interest. Recent years have 

witnessed a vast improvement in the research and 

development of automatic jigsaw puzzle solvers, 

manifested in both puzzle size, solution accuracy, and 

amount of manual human intervention required. Reported 

state-of-the-art solvers are fully automated and can handle 

puzzles of up to 9000 pieces. Most, if not all, of the 

aforementioned solvers are greedy, and thus are at great 

risk of converging to local optima. Despite the great 

potential in devising a genetic algorithm (GA)-based 

solver, the success of previous attempts was limited to 64-

piece puzzles [23], most likely due to the enormous 

complexity associated with 

 

This version, where piece locations are the only unknowns, 

is called a ‘‘Type 1’’ puzzle [9]. The solver has no 

knowledge of the original image and may not make any use 
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of it. In this paper we introduce a novel crossover operator, 

enabling for the first time an effective GA-based puzzle 

solver. Our solver compromises neither speed nor size as it 

outperforms, for the most part, state-of-the-art solvers, 

tackling successfully up to 30,745-piece size puzzles (i.e. 

more than three times the number of pieces that has ever 

been attempted/reported), within a reasonable time frame 

(see e.g. Fig. 1 for 10,375- and 22,755-piece puzzles). Our 

contribution should benefit research regarding EC in 

general, and the jigsaw puzzle problem, in particular. From 

an EC perspective, our novel techniques could be used for 

solving additional problems with similar properties. As to 

the jigsaw puzzle problem, our proposed framework could 

prove useful for solving more advanced variants, such as 

puzzles with missing pieces, unknown piece orientation, 

mixed puzzles, and more. Finally, we assemble a new 

benchmark, consisting of sets of larger images (with 

varying degrees of difficulty), which we make public to the 

community [18]. Also, we share all of our results (on this 

benchmark and other public datasets) for future testing and 

comparative evaluation of jigsaw puzzle solvers. This 

paper is an extended version of our previously presented 

work [19]. We lay out the requirements from an effective 

(GA-based) jigsaw puzzle solver, and provide a more 

detailed description of our crossover operator, as part of 

our proposed solution. Furthermore, the paper includes new 

empirical results of an extended set of experiments aimed 

at a more exhaustive performance evaluation of our 

presented solver, in general, and its novel crossover 

operator, in particular. We formed an extended benchmark 

of up to 30,745-piece puzzles and tested our solver’s 

performance multiple times on each image. Specifically, 

we have pursued the following empirical issues: (1) 

Explored the relative impact of the different phases of our 

3-phase crossover operator; (2) tested our solver’s 

performance also with a different fitness function; (3) 

investigated further the shifting anomaly discovered in our 

early work; (4) introduced a concurrent crossover version 

to reduce significantly the overall run-time of the GA 

(without affecting the solver’s accuracy). 

 

2. Previous work 

 

Jigsaw puzzles were first introduced around 1760 by John 

Spilsbury, a Londonian engraver and mapmaker. 

Nevertheless, the first attempt by the scientific community 

to computationally solve the problem is attributed to 

Freeman and Garder [8] who in 1964 presented a solver 

which could handle up to nine-piece problems. Ever since 

then, the research focus regarding the problem has shifted 

from shape-based to merely color-based solvers of square-

tile puzzles. In 2010 Cho et al. [4] presented a probabilistic 

puzzle solver that could handle up to 432 pieces, given 

some a priori knowledge of the puzzle. Their results were 

improved a year later by Yang et al. [25] who presented a 

particle filter-based solver. Furthermore, Pomeranz et al. 

[16] introduced that year, for the first time, a fully 

automated square jigsaw puzzle solver that could handle 

puzzles of up to 3000 pieces. Gallagher [9] has further 

advanced this by considering a more general variant of the 

problem, where neither piece orientation nor puzzle 

dimensions are known. In its most basic form, every puzzle 

solver requires an estimation function to evaluate the 

compatibility of adjacent pieces and a strategy for placing 

the pieces as accurately as possible. Although much effort 

has been invested in perfecting the compatibility functions, 

recent strategies tend to be greedy, which is known to be 

problematic when encountering local optima. Thus, despite 

achieving very good—if not perfect—solutions for some 

puzzles, supplementary material provided by Pomeranz et 

al. [17] suggests there is much room for improvement for 

many other puzzles. Comparative studies conducted by 

Gallagher ([9]; Table 4), regarding the benchmark of 432-

piece images, reveal only a slight improvement in accuracy 

relative to Pomeranz et al. (95.1 vs. 95.0 %). To the best of 

our knowledge, no additional runs on other benchmarks 

have been reported by Gallagher. Interestingly, despite the 

availability of puzzle solvers for 3000- and 9000-piece 

puzzles, there exists no image set, for the purpose of 

benchmark testing, containing puzzles with more than 805 

pieces. Current state-of-the-art solvers were tested only on 

very few large images, and those tested contained an 

extreme variety of textures and colors, which renders them, 

admittedly, as ‘‘easier’’ for solving [9]. We assume that as 

with the smaller images, the accuracy of current solvers on 

some large puzzles could be greatly improved by using 

more sophisticated algorithms. New attempts were made to 

solve the jigsaw puzzle problem since our original 

publication [19]; see e.g. [22] which is based on the so-

called loop constraints. To the best of our knowledge, our 

GA-based solver exhibits comparable or superior 

performance (in most cases) to other ‘‘Type 1’’ solvers 

reported in the literature. Furthermore, the proposed GA 

framework has been adapted successfully to solve 

considerably harder puzzle variants, e.g. where the pieces 

are taken from different puzzles and where the piece 

orientations and puzzle dimensions are not known. See [20, 

21] for further details. 
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3. Proposed method 

 

3.1 The fitness function  

 

Each chromosome represents a suggested placement of all 

pieces. The problem variant at hand assumes no knowledge 

whatsoever of the original image and thus, the correctness 

of the absolute location of puzzle pieces cannot be 

estimated in a simple manner. Instead, the pairwise 

compatibility (defined below) of every pair of adjacent 

pieces is computed. A measure which ranks the likelihood 

of two pieces in the original image as adjacent is called 

compatibility. Let Cðxi; xj; RÞ denote the compatibility of 

two puzzle pieces xi; xj, where R 2 fl;r; a; bg indicates the 

spatial relation between these pieces, i.e. whether xj lies, 

respectively, to the left/right of xi, or above or below it. 

Cho et al. [4] explored five possible compatibility 

measures, of which the dissimilarity measure of Eq. (1) 

was shown to be the most discriminative. Pomeranz et al. 

[16] further investigated this issue and chose a similar 

dissimilarity measure with some slight optimizations. The 

dissimilarity measure relies on the premise that adjacent 

jigsaw pieces in the original image tend to share similar 

colors along their abutting edges, i.e. the sum (over all 

neighboring pixels) of squared color differences (over all 

color bands) should be minimal. Assuming pieces xi, xj are 

represented in normalized L*a*b* space by a K K 3 matrix, 

where K is the height/width of a piece (in pixels), their 

dissimilarity (if xj is to the right of xi, for example) is  

 

3.2 The crossover operator  

 

As noted above, a chromosome is represented by anðN MÞ 

matrix, where each matrix entry corresponds to the number 

of a puzzle tile. This representation is straightforward and 

lends itself easily to the evaluation of the fitness function 

described above. The main issue concerning this 

representation is the design of an appropriate crossover 

operator. A naive crossover operator with respect to the 

given representation will create a new child chromosome at 

random, such that each entry of the resulting matrix is the 

corresponding cell of the first or second parent. This 

approach yields usually a child chromosome with duplicate 

and/or missing puzzle pieces, which is of course an invalid 

solution to the problem. The inherent difficulty 

surrounding the crossover operator may well have played a 

critical role in delaying thus far the development of a state-

of-the-art solution to the problem, based on evolutionary 

computation. Once the validity issue is rectified, one needs 

to consider very carefully the crossover operator. Recall 

crossover is applied to two chromosomes selected due to 

their high fitness values, where the fitness function used is 

an overall pairwise compatibility measure of adjacent 

puzzle pieces. At best, the function rewards a correct 

placement of neighboring pieces next to each other, but it 

has no way of identifying the actual correct location of a 

piece. Since the population starts out from a random piece 

placement and then improves gradually, it is reasonable to 

assume that some correctly assembled puzzle segments 

emerge over the generations. Taking into account the 

fitness function’s inability to reward a correct position, we 

expect such segments to appear most likely at incorrect 

locations. A crossover operator should pass on ‘‘good 

traits’’ from the parents to the child, thereby creating 

possibly a better solution. Discovering a correct segment is 

not trivial; it should be regarded as a good trait that needs 

to be exploited. Namely, it should not be discarded, but 

rather trickled to the next generations. Thus, the crossover 

operator must allow for position independence, i.e. the 

ability of shifting entire correctly-assembled segments, in 

an attempt to place them correctly in their true location in 

the child chromosome. Once the position-independence 

issue is taken care of, one should address the issue of 

detecting correctly-assembled segments, which are 

possibly misplaced. What segment should the crossover 

operator pass on to an offspring? A random approach might 

seem appealing, but in practice it could be infeasible due to 

the enormous size of the solution domain of the problem. 

Some heuristics may be applied to distinguish correct 

segments from incorrect ones. In summary, a good 

crossover operator should address the issues of validity of 

child chromosomes, detection of supposedly correctly-

assembled puzzle segments in parents, and position 

independence of these segments when passed on to an 

offspring. 

 

Given two parent chromosomes, i.e. two complete different 

arrangements of all puzzle pieces, the crossover operator 

constructs a child chromosome in a kernelgrowing fashion, 

using both parents as ‘‘consultants’’. The operator starts 

with a single piece and gradually joins other pieces at 

available kernel boundaries. New pieces may be joined 

only adjacently to existing ones, so that the emerging 

image is always contiguous. For example, let A be the first 

piece chosen by the operator. The second piece B must be 

placed in a neighboring slot, i.e. left/right of, above or 

below piece A. Assuming it is placed just above A, then a 

third piece C must be assigned to one of the empty, 

previously mentioned slots (i.e. left/right of, or below A), 

or to any of the newly available slots that are left/right of, 

or above B. See Fig. 2 for an illustration of the above 

scenario. The operator keeps adding tiles from a bank of 
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available puzzle pieces until no pieces are left. Hence, 

every piece will appear exactly once in the resulting image. 

 

Since the image size is known in advance, the operator can 

ensure that there is no boundary violation. Thus, since the 

operator uses every piece exactly once inside a bounded 

frame of the correct size, achieving a valid image is 

guaranteed. Figure 3 illustrates the above described kernel-

growing process. A key property of the kernel-growing 

technique is that the location of every piece is determined 

only when the kernel reaches its final size and the child 

chromosome is complete. Before that, all pieces might be 

shifted, depending on the kernel’s growth vector. The 

initial piece, for example, might end up at the lower-left 

corner of the image, if the kernel should grow only 

upwards and to the right, after this piece is first assigned. 

On the other hand, the very same piece might be placed 

ultimately at the center of the image, its upper-right corner, 

or any other location, for that matter. This change in a file's 

location is illustrated in Figs. 2 and 3; see, in particular, 

Fig. 3(f)–(g) of the kernel-growing process, where pieces 

keep shifting to the right due to the insertion of new pieces 

on the left. It is this important property which enables the 

position independence of image segments. Namely, a 

correctly assembled puzzle segment in a parent 

chromosome, possibly misplaced with respect to its true 

location, could be copied over during the crossover 

operation (while preserving its structure) to its correct 

location in an offspring. Having described how to construct 

a child chromosome as a growing kernel, we now turn to 

the following remaining issues: (1) Which piece to select 

from the available bank of tiles and (2) where to place it in 

the child (i.e. at which available neighboring slot). Given a 

kernel, i.e. a partial image, we can mark all the boundaries 

where a new piece might be placed. A piece boundary is 

denoted by a pair ðxi; RÞ, consisting of the piece number 

and a spatial relation. The operator invokes a three-phase 

procedure. First, given all existing boundaries, the operator 

checks whether there exists a piece boundary which both 

parents agree on, i.e. whether there exists a piece xj that is 

in the spatial direction R of xi in both parents. If so, then xj 

is added to the kernel in the appropriate location. If the 

parents agree on two or more boundaries, one of them is 

chosen at random and the corresponding piece is assigned. 

Obviously, if the piece is already in use, it cannot be 

(re)assigned, i.e. it is ignored as if the parents do not agree 

on that particular boundary. If there is no agreement 

between the parents on any piece at any boundary, the 

second phase begins. To understand this phase, we briefly 

review the concept of a best-buddy piece, first introduced 

by Pomeranz et al. [16]. Two pieces are said to be best 

buddies if each piece considers the other as its most 

compatible piece. Pieces xi and xj are said to be best 

buddies if where Pieces is the set of all given image pieces 

and R1 and R2 are ‘‘complementary’’ spatial relations (e.g. 

if R1 = right, then R2 = left and vice versa). In the second 

phase, the operator checks whether one of the parents 

contains a piece xj in a spatial relation R of xi which is also 

a best buddy of xi with respect to that relation. If so, the 

piece is chosen and assigned. As before, if multiple best-

buddy pieces are available, one of them is chosen at 

random. If a best-buddy piece is found that is already 

assigned, it is ignored and the search continues for other 

best-buddy pieces. If no best-buddy piece exists, the 

operator proceeds to the final third phase, where it selects a 

boundary at random and assigns to it the most compatible 

piece available. To introduce mutation, the operator places, 

with low probability, in the first and last phase, an 

available piece at random, instead of the most compatible 

relevant piece available.  

 

In summary, the operator repeatedly uses a three-phase 

procedure of piece selection and assignment, placing first 

an agreed-upon piece, then a best-buddy piece, and finally 

the most compatible piece available (i.e. the most 

compatible piece not yet assigned). An assignment is only 

considered at relevant boundaries to maintain the 

contiguity of the kernel-growing image. The procedure 

returns to the first phase after every piece assignment due 

to the creation of new prospective boundaries. Algorithm 2 

provides a simplified description of the crossover operator 

(without mutation). 

 

3.3 Rationale  

 

We expect to see child chromosomes inherit ‘‘good’’ traits 

from their parent chromosomes in an effective GA 

framework. Since the algorithm encourages piece position 

independence, the trait of interest is captured by sets of 

neighboring pieces, rather than the locations of particular 

pieces. Correct puzzle segments correspond to the correct 

placement of pieces relatively to each other. The notion, for 

example, that piece xi is in a spatial relation R to piece xj is 

key to solving the jigsaw puzzle problem. Thus, although 

every chromosome accounts for a complete placement of 

all the pieces, it is the internal relative piece assignments 

that are examined and exploited. We assume that a trait 

common to both parents under consideration has 

propagated through the generations and is essentially the 

reason for their survival and selection. In other words, if 

both parents agree on a spatial relation, the algorithm 

would consider it true, and attempt to draw on it, with high 
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probability. Given the highly randomized nature of the first 

few generations, agreed-upon pieces selected during this 

stage could persist incorrectly through the latter 

generations. Note, however, that due to the kernel-growing 

algorithm, some agreed-upon pieces might be selected as 

most compatible pieces at other boundaries and thus be 

discarded for later use. For example, let pieces A and B be 

adjacent in both parents; 

 

If the parents agree on no piece, the algorithm could place 

a piece from one of the parents (picked randomly)that is 

compatible with a kernel piece at an available boundary. 

Another possibility would be to place a best-buddy piece 

(if one exists) with respect to a kernel piece at an available 

boundary. Since neither two adjacent pieces in a parent 

(which could have been assigned at random) nor two best-

buddy pieces alone are guaranteed to capture a correct 

match, the idea in the second phase is to combine these two 

elements. In other words, the fact that two pieces are both 

adjacent in a parent and are also best buddies is a good 

indication that they probably match. The rationale of the 

above two phases is based on the assumption that every 

chromosome contains some correct segments. Propagating 

such segments from parents to their children is at the heart 

of the GA. More specifically, if two parents each contain a 

correct segment, with an overlap between the segments, the 

idea is to copy the joint sub-segment to the child, in the 

first phase, and add pieces from both parents, 

independently, in the second phase, to obtain the union of 

the segments. Combining the segments into a larger correct 

segment would yield an enhanced child chromosome, 

thereby advancing the overall correct solution. The third 

phase ensures that the algorithm can always add a piece to 

the growing kernel (in case the conditions for phase 1 or 

phase 2 are not met), by placing the most compatible piece 

left with respect to an available boundary. In essence, this 

phase enables the GA to try many different greedy 

placements across each generation; placements that seem 

correct are likely to persist through the latter generations. 

This exemplifies the principle of propagation of good traits 

in the spirit of the theory of natural selection. 

 

 

 

 

 

 

 

 

 

4. Results 

 

 
 

Fig.1 First step in the shuffle puzzle play online 

 

 
 

Fig.2 Arranging all the small parts into one image 

 

 
 

Fig.3 Message after completion of the puzzle  

 

5. Conclusion 

 

We introduced a new formulation for solving image jigsaw 

puzzle problems, the method PSQP – Puzzle Solving by 

Quadratic Programming. In our formulation, a solved 

puzzle is a one-to-one assignment of tiles to locations, 

according to an energy function. Since this is a hard 

combinatorial problem, we reformulate it as a quadratic 

programming approach, where we can find an approximate 
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solution by means of a gradient ascent algorithm. We 

compared PSQP to the current state-of-the-art and it 

provided superior results according to the used metrics. 

PSQP also has some advantages. First, it can solve puzzles 

not only with square tiles, but also with rectangular ones. 

Second, it is deterministic and although several parameter 

sets have to be tested, the method always yields the same 

results, while the current state-of-the-art method has to be 

executed several times to attain a certain accuracy. For the 

size of the puzzles tested, PSQP is faster, considering all 

the necessary executions in both methods. By analyzing the 

results, we observed that image puzzles that contain 

constant tiles are a weakness of PSQP. Constant tiles are 

difficult to order in a global sense, so we cannot consider 

them as a normal piece. We also observed that the right 

parameter set for each image may be determined a priori by 

analyzing the image and tiles properties. These two 

observations will be included in future studies. 
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